过孔基础知识与差分过孔设计

分享到:

在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。

1. 过孔结构的基础知识

让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。

过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。

1
图1:单个过孔的3D图

2. 过孔元件的电气属性

如表格1所示,我们来仔细看一看每个过孔元件的电气属性。

2
表1:图1中显示的过孔元件的电气属性

一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容 (C-L-C) 元件组成。表格2显示的是过孔尺寸的影响。

3
表2:过孔尺寸的直观影响

通过平衡电感寄生电容的 大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。 3D电磁 (EM) 场解算程序可以根据PCB布局布线中使用的尺寸来预测结构阻抗。通过重复调整结构尺寸和运行3D仿真,可优化过孔尺寸,来实现所需阻抗和带宽要求。

3. 设计一个透明的差分过孔

在实现差分对时,线路A与线路B之间必须高度对称。这些对在同一层内走 线,如果需要一个过孔,必须在两条线路的临近位置上打孔。由于差分对的两个过孔距离很近,两个过孔共用的一个椭圆形隔离盘能够减少寄生电容,而不是使用两 个单独的隔离盘。接地过孔也被放置在每个过孔的旁边,这样的话,它们就能够为A和B过孔提供接地返回路径。

图2显示的是一个地-信号-信号-地 (GSSG) 差分过孔结构示例。两个相邻过孔间的距离被称为过孔间距。过孔间距越小,互耦合电容越多。

4
图2:使用背面钻孔的GSSG差分过孔

不要忘记,在传输速率超过10Gbps时,过孔残桩会严重影响高速信号完整性。幸运的是,有一种背面钻孔PCB制造工艺,此工艺可以在未使用的过孔圆柱上钻孔。根据制造工艺公差的不同,背面钻孔去除了未使用的过孔金属,并最大限度地将过孔残桩减少到10mil以下。

3D EM仿真器用来根据所需的阻抗和带宽来设计差分过孔。这是一个反复的过程。此过程重复地调整过孔尺寸,并运行EM仿真,直到实现所需的阻抗和带宽。

4. 如何验证性能

图 2中显示的差分过孔设计已构建完毕并经测试。测试样片包括顶层的一对差分线,之后是到内部差分线的差分过孔,然后第二对差分过孔再次连接至顶层的球状引脚 栅格阵列封装 (BGA) 接地焊盘。信号路径的总长度大约为1330mil。我用差分时域反射仪 (TDR) 测得其差分阻抗,用网络分析仪测得了带宽,并用高速示波器测量了数据眼图来了解其对信号的影响。图3,4,5分别显示了阻抗、带宽和眼图。左图是使用背面 钻孔时的测试结果,而右图是无背面钻孔的测试结果。在图5中的带宽波特图中,我们可以很清楚地看到背面钻孔对于在数据速率大于10Gbps 的情况下实现高性能是必不可少的。

5
图3:TDR阻抗波特图(左:使用背面钻孔,ZDIFF大约为85Ω;右:无背面钻孔,ZDIFF大约为58Ω)

6
图4:频率响应(左:12.5GHz时的插入损耗大约为3dB ;右:12.5GHz时的插入损耗大于8dB)

7
图5:25Gbps时的数据眼图(左:使用背面钻孔时,数据眼是打开的;右:无背面钻孔时,数据眼是关闭的。)

继续阅读
天线的原理是什么!?它到底是怎么接收信号的?

我们用人与人之间的沟通交流来类比,天线就是我们的耳朵与嘴巴,我们通过嘴巴把声音转换成声波发出去,声波在空气中进行传播,最后被我们的耳朵听到。在通信系统中,天线就起到嘴巴和耳朵的作用,不同的是天线既可以发送电磁波又可以接收电磁波。

高速Serdes技术的发展趋势和挑战

本文回顾了Serdes的发展历程,提出了Serdes技术分代及其特点,讲述当前国内外Serdes的技术现状,以及Serdes技术的发展趋势,对Serdes架构和各模块技术演变、关键技术挑战进行了分析,并从协议、电路设计、信号完整性、发展趋势几个维度加以详细讨论。

为什么要阻抗匹配?怎么进行阻抗匹配?

为什么要阻抗匹配?怎么进行阻抗匹配? 本篇文章将会为您介绍什么是阻抗、阻抗匹配的理想模型、阻抗匹配的方法以及Smith圆图在RF匹配电路调试中的应用四个方面。

高压阻抗调谐快速指南

移动手机天线设计人员面临着许多挑战:不断增加频段覆盖范围的要求,极具挑战的行业设计限制以及不断缩小的天线安装空间。设计人员通过使用孔径和阻抗调谐器可以解决这些问题。然而,并不是任何孔径或阻抗调谐器都可以使用。当今的许多应用都需要使用更稳定、可靠的调谐产品,才能完全满足设计需求。.

PCB设计阻抗不连续怎么办?

作为PCB设计工程师,大家都知道阻抗要连续。但是,正如罗永浩所说“人生总有几次踩到大便的时候”,PCB设计也总有阻抗不能连续的时候,这时候该怎么办呢?