基于FPGA水磁无刷直流电机控制电路

分享到:

本文主要介绍基于现场可编程门阵列及EDA方法学的永磁无刷直流电机控制系统的电子电路设计。FPGA是一种高密度可编程逻辑器件,其逻辑功能的实现是通过把设计生成的数据文件配置进芯片内部的静态配置数据存储器来完成的,具有可重复编程性,可以灵活实现各种逻辑功能。

  

与ASIC不同的是,PCA本身只是标准的单元阵列,没有一般IC所具有的功能,但用户可以根据需要,通过专门的布局布线工具对其内部进行重新编程,在最短的时间内设计出自己专用的集成电路,从而大大提高了产品的竞争力。由于它以纯硬件的方式进行并行处理,而且不占用CPU资源,所以可以使系统达到很高的性能。这种新的设计方法可以把A/D接口、驱动器接口、通信接口集成在一块芯片上,同时在算法上完成位置、速度甚至电流算法,从而实现真正的片上可编程系统(SoPC)。这将成为下一代高性能 伺服控制器集成化设计的一个趋势。

  

下面针对永磁无刷直流电机模块化设计的思想,介绍基于FPGA的控制系统的电子电路设计方法,其控制系统结构如图1所示。

  

图1 控制系统结构图

  RF社区-FPGA

电路由电源模块,电压转化模块,FPCA模块,驱动电路模块,斩波电流、电压检测模块,绕组电流检测模块,A/D模块,通信模块,外扩存储器模块等部分组成。

图2 斩波器电感电流检测电路

  RF社区-FPGA

永磁无刷直流电机电枢电流检测信号调理电路和DC/DC BUCk变换器输出电压检测信号调理电路参见图3-16c和d,其功率电路如图3所示。

  RF社区-FPGA

首先,由FPGA产生5路PWM波,其中3路用于永磁无刷直流电机换相,1路用于斩波,另1路用于再生能耗调节制动电流。三相换相PWM经驱动电路控制 电机的换相,这3路PWM只用于换相不进行调制,由斩波环节进行调制。电机绕组电流经求偏、放大、滤波通过A/D(ADS7864)转换进人 FPGA(XC3S200),经PID调节器控制电流环;同样,斩波电压电流经滤波通过A/D转换也进人FPGA。图2所示为FPCA的最小系统电 路,XCF02S为FPGA XC3S200的配置芯片,TPS767D325是电源芯片,将+5V电源电压转换为+2.5V和+3.3V供给FPGA,电源芯片LM317将+5V电 源电压转换为+1.2V供给FPGA;FPGA的时钟选为50MHz,晶体振荡器为50MHz有源晶振,输出的时钟信号电压的高电平为+3.3V。

继续阅读
FPGA原理优势与市场现状

FPGA 由可编程的逻辑单元(Logic Cell)、和外部进行信号交互的输入输出单元(Input Output Block)与连接前两种元素的开关连线阵列(Switch Box)共三个部分构成。从产品发展角度,先进工艺(制程)、先进封装可以提升FPGA容量,而同工艺下优化基础单元LC的设计及其他系统设计可以提升FPGA的性能,同时软件的持续优化、丰富的软核IP库也是不同厂商竞争力高低的体现。

PWM控制下的电压反馈与电流反馈

脉冲宽度调制(PWM)控制有两种基本类型。它们的区别在于反馈回路的表现或者说什么是被控制的变量。一种控制技术是电压控制(电压模式),其中占空比δ正比于实际输出电压与 参考电压的差值。而在电流控制(电流模式)中,占空比δ正比于参考电压与一个电流有关的电压之间的差值,在非隔离型拓扑中这个电流是通过功率开关的电流,而在隔离型拓扑中 这个电流是初级绕组电流。

脉宽调制 (PWM)控制技术详解

脉宽调制 ,PWM(Pulse Width Modulation),通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。PWM控制技术主要应用在电力电子技术行业,具体讲包括风力发电、电机调速、直流供电等领域。在其诸多应用领域中,在这我们只讲电动汽车中的PWM应用。

智能固态保险丝解决升压转换器的缺陷方案

大多数基于电感的异步升压转换器(升压开关类型)在电源和负载之间都存在直流电流路径(图 1)。这条路径可能会产生两个不良后果:首先,如果接地输出或其他过载消耗大量输出电流超过几百毫秒,则箝位二极管(通常是肖特基型)会散发出所有真正的黑客都熟悉的熔融硅和灌封化合物的混合香气。其次,如果由于任何原因(例如故意关断)禁用开关动作,则负载电压仅比电源电压低一个二极管压降。如果该残余电压超出负载电路的预期稳态工作范围,则结果可能是不确定的电路行为。

你了解PWM“死区”吗?

说起PWM,很多人乍一看可能以为是一个什么品牌,但在我们工程师的世界里,PWM指的是脉冲宽度调制,是通过将有效的电信号分散成离散形式从而来降低电信号所传递的平均功率的一种方式。在电力电子中,最常用的就是整流和逆变。这就需要用到整流桥和逆变桥。对三相电来说,就需要三个桥臂。