经验分享:中功率射频放大器设计

分享到:

BFP780直流偏置电路

图1 BFP780直流偏置电路

如图1所示,电路中的Rb为偏置电阻,需要选取合适的偏置电阻来确定BFP780的静态工作点。

使用晶体管测试仪扫描直流参数,查阅BFP780的数据手册,VCE,IB,IC的极限参数分别为6V,5mA,120mA,根据实际情况设置管子的集电极输入电压范围为0~6V,基极输入电流的范围为0~1mA。直流参数扫描曲线如图2所示:

 直流参数扫描
图2 直流参数扫描

已知管子的静态工作点,从扫描曲线中可以得出基级电流IB的大小。在实际工程当中,为了减小设备电源的复杂程度,一般使用单电源供电。表1给出了Vcc=5V,BFP780正常工作范围内不同静态工作点所对应的偏置电阻Rb的参考值:


表1 BFP780偏置电阻参考值

BFP780偏置电阻参考值
根据不同的指标要求,通过查表选取相应的偏置电阻Rb。例如,要使BFP780实现较高的线性度,选取Rb=6.9KΩ,设置静态工作点为Vcc=5V、IC=90mA,使其工作在A类放大模式下;要使BFP780达到低噪声系数的指标要求,选取Rb=14KΩ,使其静态工作点变为Vcc=5V、IC=30mA。我们可以灵活地选取偏置电阻调整BFP780的静态工作点以满足系统的需求。

二、馈电电感的选取
图1中的Ldc为BFP780的馈电电感,通过分析简要介绍选取时的注意事项:

1)馈电电感对BFP780的输入输出特性阻抗有一定的影响。我们选取理想馈电电感和39nH的实际电感接入管子的集电极,测试输入输出阻抗:

图3馈电电感对BFP780阻抗影响对比曲线
图3馈电电感对BFP780阻抗影响对比曲线


图3曲线直观的表明,馈电电感选择39nH时,BFP780在1GHz~3GHz频率范围内输入输出阻抗与理想电感相差不大;当工作频率低于1GHz时,39nH的馈电电感对管子的阻抗就有较大的影响。在选取馈电电感的电感量时应充分考虑电路的工作频率,否则会造成较大的偏差。

2)馈电电感的主要功能是将电源Vcc的电压引入到BFP780的集电极当中,同时防止集电极输出的高频信号干扰电源Vcc。电感器件需要成感性时才能呈现出通直流阻交流的特性,因此在选取电感时应保证其最小自谐振频率大于管子的交流工作频率。例如:要使用BFP780设计一个工作在900MHz频率下的放大器,选择馈电电感时,其最小自谐振频率必须大于900MHz。

实际的馈电电感的还有额定电流,直流电阻等指标,这些参数受电感量、自谐振频率、封装等指标的影响,在选取时必须综合考虑,表2提供BFP780电路设计时馈电电感的相关参数,供各位参考:


表2 BFP780馈电电感参考值
BFP780馈电电感参考值

以上是我在中功率射频放大器时积累的一些工程经验,现总结成文与大家分享,希望对大家的设计有所帮助。

继续阅读
QORVO联合其他业内领先的无线芯片组提供商和射频前端供应商联合成立OpenRF联盟

中国北京,2020 年 10 月 21 日——移动应用、基础设施与航空航天、国防应用中 RF 解决方案的领先供应商 Qorvo®, Inc.(纳斯达克代码:QRVO)日前宣布联合其他领先的无线芯片组提供商和射频前端供应商联合成立 OpenRF™ (开放式射频协会)。该联盟致力于将多模式射频前端和芯片组平台的硬件和软件功能互操作性扩展到 5G 时代,同时满足客户对开放式架构的需求。其创始成员包括 Broadcom Inc.、Intel Corporation、MediaTek Inc.、Murata Man

科普:脉冲雷达基础知识

雷达通常有两种基本类型:连续波(CW)雷达和脉冲雷达。CW雷达发射连续波,并且发射的同时可以接收反射的回波信号,即收发可同时进行。脉冲雷达间歇式发射脉冲周期信号,并且在发射间隔接收反射的回波信号,即收发间隔进行...

从基带到射频:数据在手机和基站内的奇妙旅程

说起基带和射频,相信大家都不陌生。它们是通信行业里的两个常见概念,经常出现在我们面前。不过,越是常见的概念,网上的资料就越混乱,错误也就越多。这些错误给很多初学者带来了困扰,甚至形成了长期的错误认知。所以,我觉得有必要写一篇文章,对基带和射频进行一个基础的介绍。

EDI CON China:Qorvo 在 530 展台静候您的光临

EDI CON China(电子设计创新大会)是一个由产业推动的会议和展览,为设计工程师和系统集成商提供针对当今通信、计算、RFID、无线、导航、航空航天及相关市场的最新射频/微波和高速数字产品和技术信息。这项一年一度的盛事提供半导体、模块、印刷电路板和系统级的实用设计解决方案,与会者可亲身参与体验。EDI CON China 汇集了中国创新前沿和世界领先跨国科技公司的设计师。

史上最全!5G各类场景的天线解决方案

随着5G试验网络开展,5G基站系统通道数的增加并未提升单用户的感知,其作用主要是增加多用户的接入容量,但同时也增加了建网投资成本。在实际的应用场景,如室外密集热点场景、广域覆盖场景、室内分布场景、交通干线和隧道场景,它们在覆盖和容量上的需求都是有差异的。