射频放大器噪声系数(NF)是输入端与输出端信噪比之比,反映放大时引入噪声的程度,其大小直接关乎系统接收灵敏度。噪声源于器件热运动、散粒效应等内部因素及温度、信号特性等外部因素,阻抗匹配与电源噪声也有影响。优化需选低噪声器件,优化阻抗匹配与偏置参数,控制工作环境及带宽。
射频放大器基于半导体器件非线性特性,借晶体管与电路结构实现射频信号功率放大,单级含晶体管、匹配网络及偏置电路,多级通过级联提升性能且需解决级间匹配与稳定性问题;其关键指标含噪声系数、输出功率等,宽禁带半导体材料推动其高频、大功率等性能提升。
现代射频放大器在宽频带与高效率上的技术突破,体现在多方面。功率放大技术中,Doherty结构通过主辅放大器协同工作提升效率,氮化镓等宽禁带材料因性能优势实现更高功率密度;噪声抑制上,优化电路设计与采用砷化镓等材料降低噪声系数;线性度提升借助预失真等技术;宽频带则通过分布式结构实现。
低噪声放大器(LNA)聚焦接收前端,以低噪声系数为核心,需良好匹配与适配增益,保障微弱信号接收;功率放大器(PA)用于发射末端,输出功率和效率是关键,影响信号传输距离与能耗;宽带放大器侧重宽频稳定性能。选型需依系统收发功能、信号频段等,权衡性能与场景适配性。
射频放大器设计中,干扰源于外部电磁辐射、设备耦合及内部电源噪声、接地不良、器件耦合,需通过金属屏蔽、电源滤波、优化接地与布局抑制。增益不足常因器件选型不当、电路拓扑与偏置设计不合理及非线性增益压缩,解决需选高增益器件、优化电路结构与匹配网络,以保障性能。
