必备知识:噪声、相位噪声、信噪比、噪声系数详解

分享到:

通信系统中常用的术语包括噪声、相位噪声信噪比噪声系数。尽管从名称上看它们都与噪声有关,但它们之间存在一些区别,并且彼此之间也有联系。
 
在无线通信系统中,噪声是一种常见的干扰,经常会影响到系统的性能。噪声源于电子的布朗运动,即电子随机的热振荡运动,因此被称为热噪声或白噪声。
 
理论上,白噪声的功率谱密度是一个常量,这意味着在频域上每个频点的功率值都相等。为什么这样说呢?
 
首先来了解一下功率谱密度的概念。功率谱密度表示信号在频域上的分布情况,揭示了功率与频率之间的关系,单位为W/Hz或dBm/Hz。
 
结合噪声的计算公式,我们可以发现白噪声实际上与频率无关,其功率谱密度在任意频率上都是恒定的。然而,随着带宽的增加,其总功率也相应增加。理论上,在带宽无限大的情况下,白噪声的总功率也将趋于无穷大。
 
此外,还存在一些特殊类型的白噪声,如高斯白噪声,其幅度分布服从高斯分布。我们可以使用Python进行高斯白噪声的仿真。
 
在任何无线系统中,都存在噪声,它是系统固有的且无法消除的。在频谱分析仪测试时,如果信号过低,噪声往往会淹没信号,导致无法准确测量信号的大小。那么该如何解决这个问题呢?
 
通常有两种方法可以提高测试的准确性:
 
    使用平均值测试。
    减小分辨带宽(RBW)。
 
除了噪声之外,相位噪声也是通信系统中经常使用的术语。相位噪声与相位相关,它表示系统相位信号的随机变化。相位噪声的定义如下:
 
相位噪声是噪声功率密度与载波功率之比的对数值(以分贝为单位)。
 
可能会让人困惑的是,从相位噪声的公式上看不出与相位的关系。因为我们是在频域上进行相位噪声的分析和计算,所以无法直接观察到相位相关的信息。实际上,相位噪声是由于信号的相位抖动引起的,它与抖动是同一现象的不同描述方式。相位噪声用频域的方式描述和测量,而抖动则用时域的方式描述。
 
例如,在理想连续波(CW)信号中,频谱表现比较平坦,载波附近没有明显的信号增益。但如果在程序中为采样点10~20增加了0.1的相位值,结果与理想的CW信号明显不同。在频域上,信号发生了变化,载波附近出现了明显的信号增益。对于调制信号,还会导致星座图旋转的情况。
噪声在通信系统中是一个重要的概念,它对多个信号通道产生重要的影响,尤其是相位噪声。相位噪声会影响邻近信道的信号质量,降低信号接收的灵敏度,并增加误码率等。
 
对于衡量信号质量的关键指标之一,信噪比(SNR)表示了传输信号中有用信号和噪声所占的比例。SNR对信道的误码率以及信息数据的有效传输具有重要影响。
 
在信号经过功放(PA)时,除了信号被放大外,噪声也会被放大,同时放大器本身也会产生噪声。因此,输出端的SNR将小于输入端的SNR,这说明放大器存在局限性,虽然可以放大有用信号,但也缩小了信号的动态范围。
 
那么,有没有某种指标可以描述这种现象呢?
 
通常情况下,我们使用噪声系数(NF)来衡量放大器的噪声恶化程度。噪声系数是指输入端信噪比与放大器输出端信噪比的比值。
 
以一个放大器为例,理想的放大器会同时放大信号和噪声,放大前后的动态范围不会有变化,此时噪声系数为1。然而实际放大器中,由于内部因素的影响,会引入一定程度的噪声,从而降低输出端的信噪比和动态范围,导致噪声系数增大。噪声系数描述了器件或系统内部的噪声特性,对于系统或器件来说,噪声系数越小越好,低噪声放大器就是一个例子。
 
噪声在通信系统中是一个无法忽视的主题,我们常常需要通过各种方法来降低噪声以提高系统的灵敏度。本文介绍了噪声、相位噪声、信噪比和噪声系数等指标。射频工程属于一个抽象的领域,虽然它存在于我们周围,但我们无法直接感知。仅仅通过公式很难对其有深刻的理解,因此我们需要借助仿真等方法来帮助我们理解。在日常工作中,还需要使用第三方仪器进行测量和测试,以加深对无线通信世界的认识。
 
继续阅读
零差与线性调频:不同应用场景下的选择!

零差接收器主要用于信号接收,通过拍频方式将高频光信号转换为低频电信号,广泛应用于光纤通信、卫星通信和雷达系统等领域。其优势在于精确接收微弱信号,提高通信稳定性和可靠性。相比之下,线性调频收发射机关注信号发射与接收,通过频率调制实现信息远距离传输。

零差接收器:未来技术突破与全球研究新动态

近年来,零差接收器因其性能优势在国内外受到广泛关注和研究。国外起步早,注重基础理论和算法创新;国内发展迅猛,注重技术应用和产业化。双方均面临抗干扰、功耗、成本等挑战。零差接收器在光纤通信、微波毫米波通信及雷达卫星通信中发挥关键作用,确保数据准确传输和高速数据传输的可靠性。

攻克零差接收器难关,性能再上新台阶

零差接收器通过使本振光和信号光频率相同实现信号解调,需精确控制频率匹配,要求稳定的本地振荡器。解调过程复杂,对噪声和干扰敏感,需具备优异的抗噪和抗干扰能力。提升性能的方法包括采用先进振荡器技术、优化滤波器设计、降低噪声水平以及针对应用场景进行定制化设计。面临的挑战包括提高灵敏度、降低误码率和拓宽带宽。

揭秘零差接收器:原理与特征全解析

零差接收器,也称为零中频接收机,是一种特殊的超外差接收机,它直接将射频信号转换为基带信号。该接收器通过带通滤波器滤除噪声,利用低噪声放大器放大信号,并通过本地振荡器产生与信号同频的参考信号进行混频,从而得到基带信号。零差接收器结构简洁、功耗低,但存在直流偏置、I/Q不平衡等挑战。

揭秘热设计:集成电路设计的关键密码

热设计是一个至关重要的课题,其中的各种规则、缩略语和复杂方程时常让人感到它似乎是个深不可测的神秘领域;但其对于集成电路设计的意义却不容忽视——毕竟,温度是导致大多数半导体在现实应用中失效的最大环境因素。元件的预期寿命会随着温度的每一度升高而缩短。