5G智能手机中的天线技术

分享到:

最近华为mate60手机开始售卖了,相信大家都很关心一个问题,它到底是不是5G手机,这个问题在最近很火热,虽然官方没有给出明确答案,但是它确实在速度上达到了5G的水平。5G智能手机牵涉到整个产业链的技术升级,它和4G手机的区别在什么地方,哪些技术又会在5G智能手机的普及当中起到关键作用,下面我们来浅谈一下5G智能手机关键组成技术之一的天线技术。
 
1、手机,到底是怎么组成的
 
通常意义上,手机大致可分两种,一种是功能机(Feature Phone),基本上只有打电话、彩短信功能,如当年Nokia、Motorola就是功能机时代的霸主,时过境迁现在只有在特定领域出现或是老人机等形式存在;另一种就是自iPhone诞生之后更为常见的智能手机(Smart phone),现以iPhone、Samsung及华米OV为代表。随着通信技术不断发展,手机已经由承载简单功能向同时可支持话音、数据、音乐、视频等富媒体方向发展,同时可以扩展安装各种各样的应用APP来满足人们各种需求。
 
为了方便大家理解,我们做了一个简化和抽象的示意图。如下,现如今一部可支持打电话、发短信、各种上网服务并支持各种APP应用的智能手机,通常至少应该包含六个部分:天线、射频、基带及应用处理器、软件、外设及电源管理。下图是最基本的原理示意,可以说是缺一不可,正基于此,接下来我们分别做进一步介绍,接下来首先围绕天线部分展开。
 
2、现在的智能手机还用得到天线吗
 
天线是无线电波发射或接收用的一种装置,其功能主要在电磁场基本原理下,通过电场和磁场的相互转换,完成电磁波的辐射和接收。具体过程就是将发射机输出的电路信号能量转换成电磁波辐射出去,或将空间电磁波信号转换成电路信号能量送给接收机。换句更容易理解点儿的话说,天线的工作就是完成我们常说的信号的发送和接收。
 
一般情况下,天线是一根具有指定长度的导线,长度多为波长的1/4~1/2,因此传播频率越高,天线的长度越短。移动通信网络从最初的1G/2G发展到如今的4G/5G系统,手机支持的通信频率也逐渐达到了GHz频段,于是手机天线的尺寸也经历了从大到小,从外置到内置的变化。与此同时,终端也由功能机时代到了智能机时代,而且手机生产制造工艺在不断进步,消费者对于手机产品外形美观和成本等因素也日益重视,手机不断向小型化、智能化、轻薄、窄边框方向发展。
 
3、什么是天线最基本的衡量指标
 
天线的设计经常受到手机外形、结构、电路板布局、金属件等因素影响,开发难度日益加大。手机天线的设计已经不是局部问题,早已成为手机系统设计的重要组成,不仅要充分考虑天线类型、馈电方式以及天线在设备中的摆放方式,还要兼顾宽频段、高效率、低SAR值、隔离度等技术要求。不仅需要满足天线的基本射频性能指标,包括方向性、阻抗、极化、驻波比、回波损耗、增益、效率等,还需要满足移动终端产品整机射频性能指标的要求。比如与手机天线密切相关的主要测试指标包括OTA测试指标、SAR测试指标和EMC测试指标。
 
4、手机天线种类及设计中遇到的困难和挑战
 
目前常见的手机天线设计多以外壳注模,金属支架和FPC天线三种方式为主。特别是之前以iPhone手机金属外壳为代表,逐步将天线注塑在金属外壳上,在手机内部则使用少量的金属支架天线。
 
伴随2G/3G/4G/5G移动通信技术一路演进和多网络并存,智能手机及扩展应用不断涌现,所需要支持的通信频段和无线连接方式也越来越多,尤其高端旗舰手机要一机走遍全球,至少要支持超过40个以上的通信频段。更为严重的是,智能手机中的天线还在变得更多,手机天线概念也不仅限于满足移动通信,越来越轻薄的尺寸中还需要容纳和支持越来越多的天线,如Wi-Fi天线、Bluetooth天线、GPS天线,NFC天线等各种无线连接方式,甚至现在逐渐流行的无线充电,用的充电线圈也是一种天线,手机天线需要支持的频段和数量种类也不断增多,设计挑战难度越来越高。
 
另一方面的挑战来自于屏幕,这些年智能手机的持续创新之一就是始终围绕提高屏占比而努力,制造商们开始推出更轻薄、无边框设计屏幕和18:9屏幕高宽比的全面屏手机。因为天线必须置于屏幕区域之外,可用于天线设计的面积因此减少50%以上,同时屏幕顶部和底部的边框宽度减少到3-4 mm,更由于屏幕高宽比的变化,手机也开始变得更窄,这些变化都意味着手机天线必须变短,进而影响性能。
 
天线面积和长度的减少会直接影响性能和效率,其发送和接收性能势必遭受影响,也带来各种弊端,包括缩短电池续航时间短、辐射范围变小、速率变低等。
 
5G 5G手机
图源qorvo:天线面积减少直接影响天线效率
 
目前4G通信的频段是2.6GHz,而5G主力使用的通信频段也在6GHz以下,因此当前支持5G低频Sub-6频段在手机天线尺寸上不会与4G有较大变化,多为天线组合数量上的变化。如4G手机一般需要4-6根天线,5G手机已普遍超过10根天线。以华为Mate30为例,手机天线甚至已多达21根天线。当然,这里并不像华为余承东总说的这21根都是用作5G,就像上文所说,这里其中2根给GPS用,2根给Wi-Fi的2.4G用,2根给Wi-Fi的5G用,1根给NFC用,除此外的14根才是真正的移动通信天线,支持5G、4G及一系列通信制式的组合。
 
5、如何看今后手机天线设计之趋势
 
随着手机内部空间进一步压缩紧凑,很难再找到一块平整的平面用于天线设计。目前为了控制成本,一些中低端手机仍在大量使用FPC(柔性电路板,可以理解为类似手机排线样式的天线)天线,但FPC加工精度,粘结工艺等,信号的质量并不稳定,但其优点也不应该被忽视,那就是FPC天线可折叠,可弯曲成任意的形状,可以应对人们对便携设备尺寸和设计的更高要求。因此,为了发挥其优势的同时又避免其存在的部分劣势,业内逐渐引入具有很好高频特性LCP材质的FPC天线并加以重视。
 
由于5G对天线的精度和可靠性有更高的要求,LDS(Laser-Direct-structuring)天线技术已是手机天线设计的首选方案。LDS技术是利用激光镭射直接在成型的塑料支架上镀成金属天线形状,该技术避免了手机内部元器件的电磁干扰,保证了手机的信号,同时也增强了手机的空间的利用率,使得智能手机在5G时代仍然可以保持一定程度的纤薄。
 
相比于目前Sub-6GHz的5G频段或是即将引入的700M 5G频段,未来5G毫米波的商业化引入才是对手机天线设计的极大挑战。5G毫米波之所以成为毫米波,是因为几十GHz的频率导致其波长已经缩减到了毫米级。波长的大幅度减小带来的问题是电磁波绕射能力变差,衰减变得异常明显。
 
为改善高频带来的衰减问题,从空间传播上可以用MIMO多天线和波束赋形来解决,但是在手机内部为了保证信号的完整性,需要将射频前端尽可能靠近毫米波天线,而毫米波天线的小尺寸,给天线和射频前端、收发器等器件共同封装提供了可能,狭长的芯片形状便于直接嵌入手机边框里。
5G手机天线设计相比于过去难度更大,不仅要考虑无线技术本身,还要考虑与电池、摄像头、声音喇叭、显示屏、指纹识别芯片、无线充电项圈等系统兼容,同时兼顾在狭小的方寸间有效解决多天线布局问题。
继续阅读
共面波导馈电:性能提升与技术挑战探讨

共面波导馈电技术因结构紧凑、易集成而受青睐,但面临设计优化复杂、寄生辐射等挑战。为满足高速数据传输、宽带通信等应用需求,需深入研究创新。优化结构设计、选用优良材料、控制阻焊层及PCB回蚀等因素,可提升性能。针对特定场景,定制化优化是关键,确保共面波导馈电在极端条件下可靠运行。

共面波导馈电:原理揭秘与独特优势解析

共面波导馈电是一种基于微带线或共面波导结构的信号传输方式,通过特定传输线结构实现高效信号传输和馈电功能。它具备出色的抗干扰能力、紧凑的设计、易于调节的特点,广泛应用于光调制、光耦合以及光互联器件中。在微带天线设计中,共面波导馈电展现出优越性能,具有低损耗、高效率等优势,能有效优化天线性能。

激励信号性能飞跃,未来技术研究方向揭秘

激励信号性能提升的关键在于增强强度、稳定性和准确性,满足复杂系统需求。通过优化信号源、改进传输方式、精确校准和调节,提升激励信号质量。针对特定应用场景进行定制化优化,满足不同需求。未来,智能化、高精度高稳定性、远程控制和实时监测将是激励信号技术的重要发展方向,推动激励信号技术的不断创新和应用拓展。

激励信号原理揭秘,技术难点挑战与突破之道

激励信号的原理涉及系统响应的引发和行为的驱动,通过不同形式的信号激发系统内部反应机制。在实际应用中,激励信号的设计、稳定性、与系统匹配等面临技术难点。需要深入研究信号参数优化、稳定性保障及与系统的匹配问题,以适应多样化应用场景。同时,随着技术发展,激励信号技术需不断创新以满足新需求。

零差与线性调频:不同应用场景下的选择!

零差接收器主要用于信号接收,通过拍频方式将高频光信号转换为低频电信号,广泛应用于光纤通信、卫星通信和雷达系统等领域。其优势在于精确接收微弱信号,提高通信稳定性和可靠性。相比之下,线性调频收发射机关注信号发射与接收,通过频率调制实现信息远距离传输。