创新“放大”通向DOCSIS 4.0之路

分享到:

DOCSIS 4.0正在将上行频谱推向曾被视为下行频谱的领域,其定义的四个全新分频将频谱范围从5MHz一直延伸至684MHz——这也给上行应用放大器的设计带来了挑战……
 
在这个世界上,我们越来越多地沉浸在虚拟空间的工作、学习、购物和娱乐中;由此对上行连接的需求也呈指数级增长。多系统运营商(MSO)已经看到,他们的同轴网络容量——及其客户——正在从电缆数据服务接口规范(DOCSIS®)3.1的实施中获益。DOCSIS实现了在现有光纤-同轴混合基础设施上的高带宽数据传输。
 
DOCSIS 3.1将整个行业的工作频率推向1.2GHz。但如果MSO要跟上全球消费者需求的步伐,那么行业还需要走得更高、更快。扩展频谱DOCSIS 4.0将进一步把频率提升至1.8GHz,这也是在传统FDD HFC网络中构建支持更高上行数据速率架构的下一步。
 
DOCSIS 4.0目前已获批,预计2024年初将开始提供相应的支持与设备。这一版本定义了四个新的分频,扩大了频谱范围并可能引爆令人兴奋的全新应用。诸如实时流媒体和内容创作这样对数据上传要求更高的操作将大大提速。然而,这也给为上行应用设计放大器的开发人员带来了挑战,因为他们现在需要支持更高的频段。
 
“针对短期需求的频段划分项目将开始让位于面向长期的DOCSIS 4.0升级;尤其是在北美市场,因为那里的运营商正在寻求扩充容量,以跟上光纤ISP的步伐,”Dell'Oro Group副总裁兼分析师Jeff Heynen表示,“此外,这些升级将导致光节点、放大器和无源设备(包括连接端和低损耗电缆分路器)的支出大幅增加。”
本篇博文为Qorvo设计峰会网络研讨“采用灵活架构满足DOCSIS 4.0更高带宽的上行要求”的内容节选,其中解读了DOCSIS 4.0及其新的上行选项,并讨论了针对数据吞吐量和带宽的考虑。
 
另外,相关白皮书《如何以更高的效率提高CATV放大器的下行带宽与上行能力》内容精彩十分,绝对值得一看;特别是如果您对下一代技术和推动这些技术的进步感兴趣的话。
 
DOCSIS 4.0频谱选项
 
DOCSIS 4.0的频谱选项相比其前一次迭代版本有了很大改进。通过这一最新版本,用户现在可以享受到高达10Gbps的下载速度和高达6Gbps的上传速度;除了速度上的显著提升,也在减少延迟方面实现重大升级。为配合更快的速度,DOCSIS 4.0中还包括了扩展频谱技术,将上行频谱扩展至684MHz,下行频谱扩展到1.8GHz。此种扩展的频谱为数据传输创造了更大的通道,使其更快速、更有效。
 
扩展频谱在DOCSIS 4.0中提供了四个新的分频选项,为具有额外超高分频的实施方案增添了灵活性。利用频分双工(FDD)技术,上行和下行被分离。具体用例的性质将决定何种分频方式对上行和下行的要求有利。
 
使用96MHz分组正交频分多址(OFDMA)允许多个客户共享一个信道,通过时分多址格式技术进行上行接入。运营商可选择最适合其需求的分频方式;其中,204MHz和396MHz的分频在2.5-3.0Gbps的上行速率和超过10Gbit/秒的下行速率间取得了合理平衡,因而可能最受青睐。
 
Qorvo DOCSIS 4.0
 图1:DOCSIS 4.0 ESD数据吞吐量
 
DOCSIS技术创新
 
Qorvo为DOCSIS 3.0、DOCSIS 3.1和DOCSIS 4.0打造完整的RF解决方案组合,并利用其丰富的行业经验提供支持,以加速设计、制造和测试进程。
 
在下行应用方面,其针对DOCSIS 3.1和FDX DOCSIS 4.0网络大功率光纤深度应用的最新产品为QPA3260或QPA3246功率倍增模块,可提供频段高达1.2GHz的最高线性输出功率。对于FDD DOCSIS 4.0,QPA3314功率倍增模块可等效支持1.8GHz应用。QPA3260、QPA3246和QPA3314提供 23dB的增益,具备业界领先的线性度。
 
Qorvo的专有制造业务支持每年生产数百万件产品所需的卓越自动化水平,满足CATV市场所需的质量与可靠性。此外,公司对CATV系统的测试非常全面且针对特定产品。为确保始终如一的质量和可靠性,Qorvo在其CATV模块放大器生产中100%实施了小信号和失真测试。此外,测试还包括加载传统模拟负载,或使用单载波QAM或OFDM信道的最新数字负载的多载波(复合)失真测试。
 
 
对于上行应用,Qorvo提供了一种“积木式”的方法,使客户能够将器件放置在其最终应用所需的位置。这些器件包括小尺寸、低功耗放大器,以及衰减器、均衡器和开关。它们使MSO能够提供5MHz至684MHz的全带宽,以满足DOCSIS 4.0的任何分频要求。
 
Qorvo的器件系列包括单端和差分放大器,可覆盖整个DOCSIS上行频谱。Qorvo还拥有一系列压控衰减器和数字步进衰减器;创新的上行可变均衡器系列产品可用于线性或电缆补偿。计划于2024年发布的新器件将大大减少分频低于396MHz的损耗,并提供反向电缆补偿选项。
 
Qorvo DOCSIS 4.0
 图2:Qorvo的“积木式”方法助力MSO构建DOCSIS 4.0及其它扩展频谱应用
为新应用铺平道路
 
总体而言,DOCSIS 4.0有望为有线网络基础设施带来重大改进,并支持需要更快网速、更大容量和更高网络效率的各类应用,让MSO全心致力于创新解决方案,以进一步扩展频谱。
 
为DOCSIS 4.0设计放大器需要仔细考虑以下几个要求:更高的频率范围、更高的输出功率等级,和更卓越的噪声性能。最后,Qorvo设计峰会网络研讨“采用灵活架构满足DOCSIS 4.0更高带宽的上行要求”提供了更详细的解读,欢迎进一步了解~
 
本文转载自Qorvo半导体微信公众号
相关资讯
应对5G复杂性:理解射频前端设计中的“功率等级2”

伴随更多频段的增加和愈发复杂的移动设备出现,蜂窝通信市场已发生巨大变化。随着4G和5G的部署,3GPP的最新规范已将PC2引入FDD频段,更高的发射功率水平也由此带来了与之相关的全新挑战。下面,就让我们回顾一下PC2的基础知识,并深入探讨PC2如何随着这些新的5G部署而演进。

如何消除探针电容对电感测量的影响?深入分析与校正方法

探针电容对电感测量精度的影响不可忽视,特别是在频率接近电感谐振频率时。寄生电容与电感并联,改变了总电抗,导致测量误差。通过选择适当的测量频率和电容校正,可以有效减少这种误差,提高测量准确性。通过迭代优化频率,能够进一步提升精度,确保电感测量结果的可靠性,特别是在高精度应用场合中。

超宽带UWB技术:探索应用、优势与未来发展前景

超宽带(UWB)技术通过宽频带信号传输实现高数据速率、低功耗和高精度定位,广泛应用于物联网、智能家居、汽车行业等多个领域。UWB的抗干扰能力和短脉冲特性,使其在复杂环境中表现出色,特别适合精准定位与实时数据传输。随着技术不断成熟,UWB有望在智能城市、智能医疗等领域发挥重要作用,推动无线通信技术的创新与发展。

嵌入式系统电源管理:从PMU到DVFS技术的全面解析

嵌入式系统电源管理技术在确保高性能的同时优化功耗,成为现代嵌入式设备设计中的核心环节。通过电源管理单元(PMU)、动态电压频率调节(DVFS)、电源模式优化等技术,系统能够根据工作负载智能调节电压、频率和功耗,从而提高能效。能量收集技术进一步增强了系统的自给能力,减少对外部电源的依赖。随着智能硬件的普及,电源管理技术将持续发展,推动嵌入式系统在性能和能效上的突破。

全面解析无线通信:从信号传输到功率控制,技术原理大揭秘

无线通信技术通过调制、解调、信道编码与多路复用等多项关键技术实现信息的高效传输。本文详细介绍了无线通信的基本原理,重点分析了信号传输、调制解调、信道编码、多路复用和功率控制等技术,揭示了它们如何提升无线通信的效率和可靠性。这些技术为无线网络的高速传输和广泛应用提供了基础支持。

精彩活动