电子产品金属外壳与电路板接地问题的探讨

标签:RF射频PCB
分享到:

在电子产品的设计与制造过程中,接地问题始终是一个核心议题。特别地,金属外壳与电路板的接地问题更是重中之重。本文将深入探讨这一问题,并阐述为何经常会在系统设计中看到将PCB板的地(GND)与金属外壳(EGND)之间通过一个高压电容C1(1~100nF/2KV)并联一个大电阻R1(1M)进行连接的原因。
电路板
 
首先,我们来谈谈电容的作用。从电磁抗扰度(EMS)的角度出发,这一电容在确保PE与大地连接的基础上,主要用于降低可能存在的、以大地电位作为参考的高频干扰信号对电路产生的影响。这种设计旨在抑制电路与干扰源之间瞬间共模电压差。事实上,直接将GND连接到PE是最理想的情况,但由于操作困难或安全隐患(例如,经过整流桥后产生的GND无法直接连接PE),我们通常不会这么做。因此,我们需要设计一条既能阻止低频信号通过,又能允许高频信号通过的通路。从电磁干扰(EMI)的角度来看,若存在与PE相连接的金属外壳,这条高频通道的存在也有助于防止高频信号辐射至外部环境。
 
具体来说,电容的特性是通交流阻直流。假设机壳良好连接大地,那么从电磁抗扰度的角度来看,该电容能够抑制高频干扰源和电路之间的动态共模电压;而从EMI的角度来看,电容形成了高频路径,电路板内部产生的高频干扰会经电容流入机壳进入大地,从而避免了高频干扰形成的天线辐射。另一种情况是,如果机壳没有可靠接大地(如没有地线,接地棒环境干燥),那么外壳电势可能不稳定或有静电。在这种情况下,如果电路板直接接外壳,就可能损坏电路板芯片。加入电容后,能够将低频高压、静电等隔离起来,从而保护电路板。这个并联电容应该使用Y电容或高压薄膜电容,容值在1nF~100nF之间。
 
接下来,我们讨论电阻的作用。这个电阻的主要功能是防止静电释放(ESD)对电路板造成损害。如果仅使用电容将电路板地与外壳地相连,电路板就会构成一个浮地体系。在进行ESD测试或在复杂电磁场环境下使用时,电荷注入电路板后难以得到有效释放,进而会积累。当积累到一定程度,超出电路板及外壳间绝缘最薄弱点能够承受的电压值时,就会引发放电现象。这种放电现象可能会在极短时间内在电路板上产生数十至数百安培的电流,导致电路因电磁脉冲而停止运行,或破坏放电部位附近的连接元器件。而加装这个阻抗件后,就能逐步释出电荷并消除高压。根据IEC61000的ESD测试标准,每次放电需在10秒钟内完成2千伏电压的释放,因此一般建议选用1兆欧至2兆欧的电阻。如果外壳带有高压静电,此高阻抗元件也能有效降低电流,从而避免电路芯片受损。
 
在实际操作中,我们还需要注意以下几点:首先,如果设备外壳良好接大地,那么PCB也应该与外壳进行良好的单点接地。这样,工频干扰会通过外壳接地消除,不会对PCB产生干扰。其次,如果设备使用的场合可能存在安全问题,那么必须将设备外壳良好接地。再次,为了取得更好的效果,建议设备外壳尽量良好接地,同时PCB与外壳也应进行单点良好接地。然而,如果外壳没有良好接地,那么将PCB设为浮地(即不与外壳连接)可能是一个更好的选择,因为这样可以避免工频干扰对PCB的影响。
 
此外,当需要连接多个设备时,应尽量确保每个设备外壳均与大地在单点进行良好接地,同时每个设备内部的PCB也应与其壳体在单点进行接地。然而,如果由于某种原因(如设备外壳无法实现良好接地)无法实现这一点,那么将设备转为浮地状态,内部PCB无需与外壳接地可能更为适宜。
 
最后,值得注意的是,虽然机壳地通常是一个理想的接地选择,但在某些情况下(如在配电网中未遵守相关安全规定,无地线存在;或者是接地棒周围土壤过于干燥,接地螺栓出现锈蚀或松动的情况),它可能并非最佳选择。此外,工作环境中的电磁干扰(如大功率变压器、大功率电机、电磁电炉、高压电网谐波等)以及PCB内部产生的高频噪声(如高频开关管、二极管、储能电感、高频变压器等)都可能对PCB的信号地和机壳的电势产生影响。因此,对它们进行良好可靠的接地处理是必要的,也是产品安规要求的。
 
综上所述,电子产品中的金属外壳与电路板接地问题是一个复杂而重要的议题。通过合理设计和选择适当的接地方式(如使用电容和电阻进行并联连接),我们可以有效地降低电磁干扰和静电释放对电路的影响,从而提高产品的稳定性和可靠性。同时,我们还需要注意在实际操作中遵循相关的安全规定和标准,以确保产品的安全和性能。
 
相关资讯
NB-IoT技术突破:赋能万物互联新生态

NB-IoT作为基于蜂窝网络的低功耗广域网技术,凭借低功耗、广覆盖、低成本优势,满足海量设备连接需求。其通过优化物理层设计、简化协议栈降低功耗成本,增强网络覆盖,深入信号薄弱区域,推动多行业数字化转型与智能化升级。

精准定位破局,UWB技术重塑智能工厂制造业效率新高度

UWB技术基于极窄脉冲无线通信,以超宽带信号、脉冲调制方式捕捉信号到达时间差,实现厘米级高精度定位,具备强穿透力、抗多径衰落和低功耗特性。它解决智能工厂定位难题,赋能设备、物料和人员管理,虽有成本、环境干扰等挑战,但与新技术融合后前景广阔。

一文读懂射频收发器:从技术原理到全场景应用

射频收发器是无线通信核心,在发射端将数字信号经编码、数模转换、射频调制与功率放大器放大后发射;接收端通过低噪声放大器提升信噪比,经混频解调、滤波、模数转换,最终由数字信号处理单元还原信息,其性能指标决定应用适配性。

摆脱线缆束缚!电磁耦合如何赋能无线充电新时代

电磁耦合技术基于电磁感应现象,在无线充电中通过发射端线圈输入交流电产生交变磁场,接收端线圈感应电流实现电能传递。实际应用需优化线圈参数、位置及磁芯材料,磁共振技术进一步突破传输距离限制,为消费电子、新能源汽车等领域提供无接触充电解决方案。

探秘毫米波天线:实现高效信号传输的核心组件​

毫米波天线是实现高效信号传输的核心组件。它基于电磁波传输与辐射理论,凭借毫米波频段频谱丰富、天线尺寸小、方向性好等优势,结合多天线阵列波束赋形技术,克服信号衰减等挑战,广泛应用于多领域并持续创新发展。

精彩活动