『这个知识不太冷』了解天线复用器

分享到:

『这个知识不太冷』系列,旨在帮助小伙伴们唤醒知识的记忆,将挑选一部分Qorvo划重点的知识点,结合产业现状解读,以此温故知新、查漏补缺。
 
如今的制造商面临着一个重要的架构决策。他们可以尝试在不断缩小的设备区域内增加更多的天线,但这有可能降低天线性能,从而影响设备的整体性能。或者,他们可以选择使用新的替代方案:天线复用器,该器件可减少添加天线的需求,并可满足共存滤波和插入损耗要求。
 
在本章中,您将了解天线复用器如何用更少的天线实现更多的功能,并了解在许多无线应用中使用它们的优点。
 
为何如今的设备需要使用天线复用器
 
我们回头再看看《了解 RF 前端和滤波器》的图7,该图显示了天线复用器和多路复用器之间的不同。注意,天线复用器用于天线附近以降低复杂性,而多路复用器更靠近射频前端(RFFE),位于功率放大器(PA)附近。
 
天线复用器解决了5G系统无线制造商面临的一个关键挑战:在工业设计不断演进,导致可用的天线区域不断缩小的情况下,如何应对射频 (RF) 复杂性的急剧增加。通过利用天线复用器,制造商能够使用更少的天线满足新的5G频段、4x4多路输入/多路输出(MIMO)、多样性功能和其他新要求,同时不会对现有外形尺寸或功能产生影响。
 
在移动设备Wi-Fi应用中,天线复用器滤波器在降低设计复杂性和促进共存方面发挥着关键作用。它们还有助于提供高度隔离,帮助降低天线设计中的隔离参数,并允许使用成本更低的天线。如此一来,RFFE隔离参数不再需要完全依赖于天线。这可将天线和屏蔽的成本降低高达20%。
 
增加新的蜂窝和非蜂窝频段提高了所有无线电子设备中射频(RF)路径的总数,包括智能手机、汽车、Wi-Fi网关等。例如,一部典型的5G智能手机(支持毫米波(mmWave)和超宽带(UWB)频段),其 RF 路径数量是传统4G手机的两倍。如今的许多手机需要六根或更多天线来使用主蜂窝和各种接收功能。每条RF路径都需要连接至天线,但因为可用空间有限,要将天线的数量翻倍根本不可能。
 
此外,增加天线数量意味着它们必须彼此靠近,从而会降低天线之间的隔离度。这会导致耦合相关问题,从而增加射频前端 (RFFE) 中存在非线性元件的可能性,使接收器的灵敏度降低。
 
图1显示了多个频段;注意这些频段彼此的连接有多紧密。例如,Wi-Fi 2.4 GHz和GPS L5都落在低频段和中高蜂窝频段之间。
智能手机设备中使用的多个频段
图1:智能手机设备中使用的多个频段
 
天线复用器有助这些单个频段彼此共存。它允许通过一个天线传输大带宽,为工程师降低了使用天线的复杂性。然后,由天线复用器将这个大带宽分成多个波段。如果没有天线复用器,就需要使用更多天线和开关。
 
天线复用器在分离单个低、中、高蜂窝频段、Wi-Fi和GPS(L5、L1)信号方面发挥着关键作用,同时有助消除干扰和降低系统损耗。在图2中,上方的智能手机图片显示天线上有许多个单独的滤波器。此外,左上角的图像中有三根天线。底部的智能手机图片显示在这种设计中采用天线复用器如何帮助降低复杂性、组件数量和尺寸。如左下方的图所示,使用天线复用器之后,您可以将天线的数量从3个减少到1个,还可以将组件数量从4个减少到1个。此外,如右下方的图所示,增加天线复用器可以将组件数量从4个减少到2个。这证明了天线复用器能够让系统工程师更轻松地构建设计。
天线复用器解决方案
图2:智能手机有或没有天线复用器解决方案
 
天线复用器为系统和模块设计人员提供了许多优点。它不仅减少了所需天线的数量,还在降低系统级减敏率的同时尽可能提高了性能。它还有助提高设计灵活性,以支持架构和工业设计方面的变化。通过使用天线复用器,智能手机等设备可更有效地利用现有的天线面积,同时增加对新频段的支持,且不会对现有外形尺寸或功能产生任何影响。
 
深入了解天线复用器技术
 
现在您已经了解了使用天线复用器的原因,下面来看看其使用原理,您将了解天线复用器和隔离的类型。
 
①了解天线复用器的类型
 
图3显示了多种天线复用器版本,它们都使用单根共享天线。例如,图中右上角所示的三工器分割了传输至一根天线的Wi-Fi、中频段和超高频段,同时提供实现最优共存所需的带外(OOB)抑制。图3中剩余的两个天线复用器功能相似,但通过在系统中寻址蜂窝网络、Wi-Fi和全球导航卫星系统(GNSS)来实现。但是,可以实现多种天线复用器滤波器组合。
天线复用器
图3:一些天线复用器示例
 
②了解天线复用器隔离
 
和多路复用器一样,天线复用器也需要在滤波器和频段之间提供高度隔离,如图4所示。该图显示了在该天线复用器中测量隔离的全球定位L5和GNSS滤波器。
天线复用器隔离测量
图4:天线复用器隔离测量
 
右图显示的是集成在同一封装设计中的两个滤波器之间的信号隔离水平。通常,基于声波滤波器的天线复用器具有最佳性能,因为它们集成了低插入损耗、多频段共存的地址OOB抑制功能,且共用天线的RF频率之间具有高隔离度。它们还支持适用于5G、Wi-Fi和UWB的超高频率。
 
文章转载自Qorvo半导体微信公众号
继续阅读
共面波导馈电:性能提升与技术挑战探讨

共面波导馈电技术因结构紧凑、易集成而受青睐,但面临设计优化复杂、寄生辐射等挑战。为满足高速数据传输、宽带通信等应用需求,需深入研究创新。优化结构设计、选用优良材料、控制阻焊层及PCB回蚀等因素,可提升性能。针对特定场景,定制化优化是关键,确保共面波导馈电在极端条件下可靠运行。

共面波导馈电:原理揭秘与独特优势解析

共面波导馈电是一种基于微带线或共面波导结构的信号传输方式,通过特定传输线结构实现高效信号传输和馈电功能。它具备出色的抗干扰能力、紧凑的设计、易于调节的特点,广泛应用于光调制、光耦合以及光互联器件中。在微带天线设计中,共面波导馈电展现出优越性能,具有低损耗、高效率等优势,能有效优化天线性能。

激励信号性能飞跃,未来技术研究方向揭秘

激励信号性能提升的关键在于增强强度、稳定性和准确性,满足复杂系统需求。通过优化信号源、改进传输方式、精确校准和调节,提升激励信号质量。针对特定应用场景进行定制化优化,满足不同需求。未来,智能化、高精度高稳定性、远程控制和实时监测将是激励信号技术的重要发展方向,推动激励信号技术的不断创新和应用拓展。

激励信号原理揭秘,技术难点挑战与突破之道

激励信号的原理涉及系统响应的引发和行为的驱动,通过不同形式的信号激发系统内部反应机制。在实际应用中,激励信号的设计、稳定性、与系统匹配等面临技术难点。需要深入研究信号参数优化、稳定性保障及与系统的匹配问题,以适应多样化应用场景。同时,随着技术发展,激励信号技术需不断创新以满足新需求。

零差与线性调频:不同应用场景下的选择!

零差接收器主要用于信号接收,通过拍频方式将高频光信号转换为低频电信号,广泛应用于光纤通信、卫星通信和雷达系统等领域。其优势在于精确接收微弱信号,提高通信稳定性和可靠性。相比之下,线性调频收发射机关注信号发射与接收,通过频率调制实现信息远距离传输。